


# Identifying Multi-Word Expressions with Recurring Tree Fragments

FEDERICO SANGATI FBK, Trento & Edinburgh Univ. sangati@fbk.eu

# Andreas van Cranenburgh

Huygens ING, Royal Netherlands Academy of Arts & Sciences; ILLC, Univ. of Amsterdam. andreas.van.cranenburgh@huygens.knaw.nl



INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION UNIVERSITY OF AMSTERDAM

### Abstract

We investigate ways of automatically detecting MWEs in large treebanks:

- Arbitrarily large syntactic constructions extracted from a treebank; i.e., tree fragments, as in TSGs, cf. Green et al. (2013).
- Fragments may include any number of lexical units (L) and possible intervening gaps (X)

| Related Work                                                             |                          |                                   |                            |
|--------------------------------------------------------------------------|--------------------------|-----------------------------------|----------------------------|
|                                                                          | Ramisch et al. (2010)    | Green et al. (2013)               | This work                  |
| Unsupervised                                                             | YES                      | No                                | YES                        |
| Association measures                                                     | YES                      | No                                | YES                        |
| Syntax                                                                   | POS tags                 | flat rules                        | hierarchical               |
| Gaps                                                                     | No                       | No                                | YES                        |
| Representation                                                           | 〈 JJ_mountain, NN_bike 〉 | MWN<br>NN IN NN<br>part of speech | VP<br>VBNP PP<br>get IN NP |
| PARSEME WORKING GROUPS:                                                  |                          |                                   |                            |
| WG3 - Statistical, Hybrid and Multilingual Processing of MWEs the ground |                          |                                   |                            |

 Association measures over words select MWEs from candidate tree fragments Recurring fragments can be used for MWE-informed statistical parsing approach.

### WG4 - Annotating MWEs in Treebanks

Automatically derived MWEs, enriched with their syntactic structures, can be employed to automatically label existing treebank with MWE-informed tags, and can lead to the creation of resources such as MWE lexicons and valence dictionaries.

## Fragment Extraction

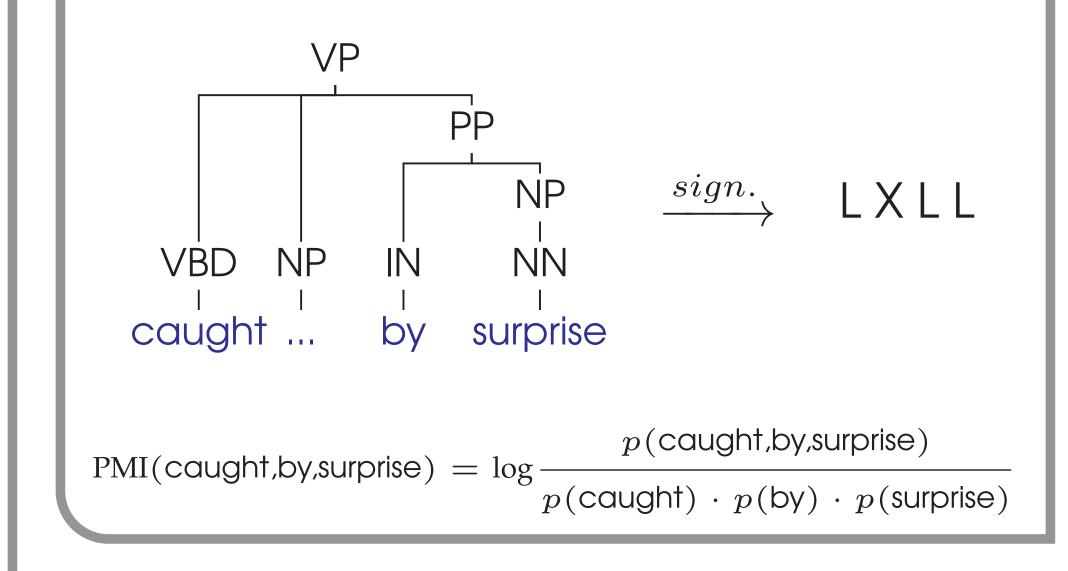
Using Tree Kernel Technique:

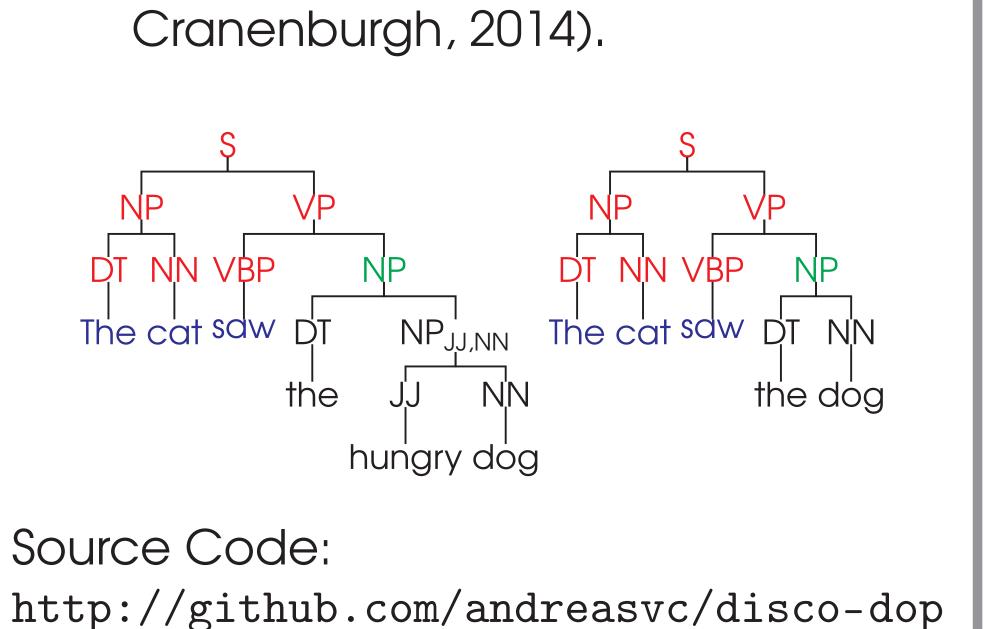
- Given a pair of trees, we can extract their *overlapping fragments*.
- When applied to a treebank, this yields a *set of recurring patterns*.
- Fragments can be seen as *building blocks* of the treebank.
- Can be extracted efficiently (Sangati et al., 2010; van

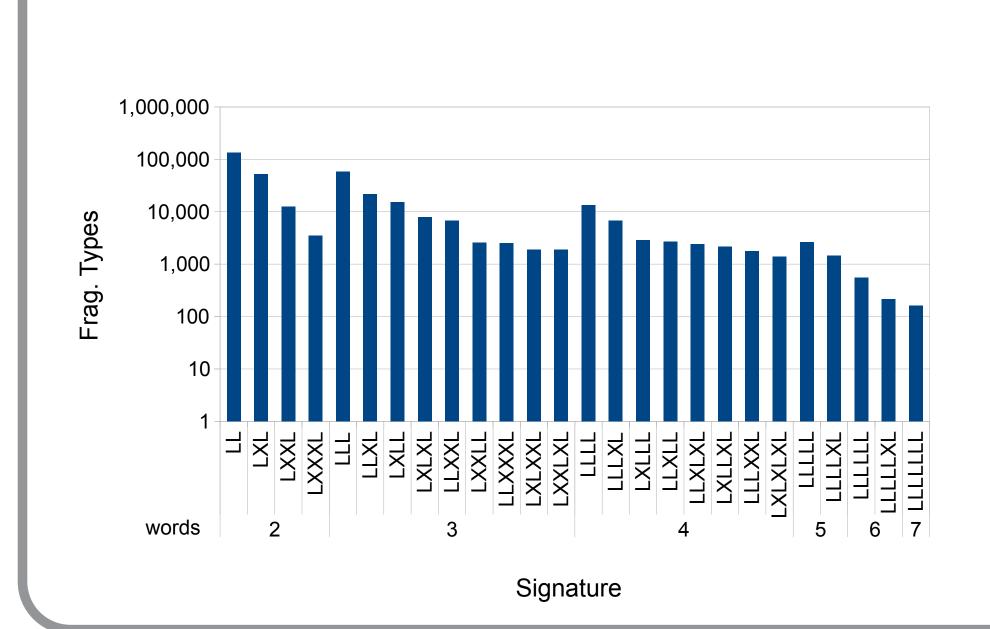
### DATA

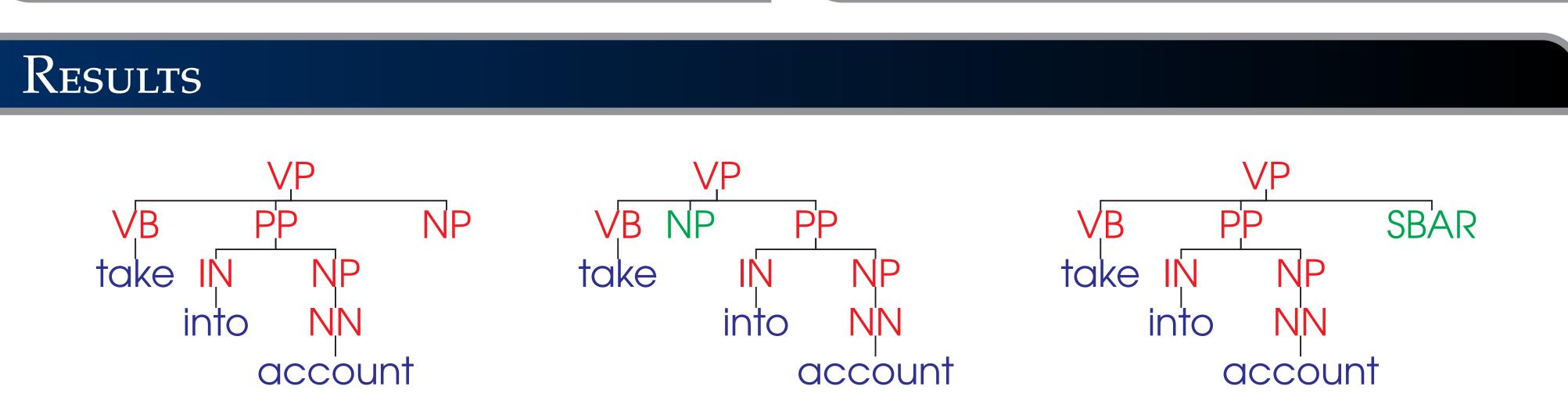
#### Treebank

| Corpus   | Automatically   |       |
|----------|-----------------|-------|
|          | English Gigawa  | ord   |
| Section  | NYT             |       |
| Sampling | Every 150 sente | ences |
| Size     | 500K sentences  | 5     |
|          |                 |       |


#### Fragment Counts


| Total Recurring Fragments            | 4.3M |
|--------------------------------------|------|
| $\geq$ 1 content + 1 non-punct. word | 2.8M |
| freq. $\geq 5$                       | 400K |


## MWE SELECTION


Per-Signature Multivariate Generalization of Pointwise Mutual Information (PMI):

```
PMI(L_1, L_2, \dots, L_n) = \log \frac{p(L_1, L_2, \dots, L_n)}{\prod_{i=1}^n p(L_i)}
where p(L_1, L_2, \dots, L_n) is computed
within the set of fragments sharing the
same signature (e.g., L X L L).
```









# Open Issues

- Signatures
  - differences: words, PoS tags, syntactic categories
  - outer categories (before/after lex. span)
- PMI for > 2 tokens
- Overlapping with sub/supersets of fragments
- Other association measures for syntactic trees
- Larger Treebank

| F | req. | = 8 |  |
|---|------|-----|--|
|   |      |     |  |

Freq. = 7

3 words (VB\_take X L L)

PMI Signature Pattern Freq. 18.0 VB\_take NP IN\_into NN\_account 6 14.6 VB\_take NP IN\_for VBN\_granted 6 VB\_take DT NN\_look IN\_at 13.6 7 12.9 VB\_take NP TO\_to NN\_court 6 12.5 VB\_take NN RB\_away IN\_from 6 12.4 17 VB\_take NP RB\_away IN\_from 12.0 6 VB\_take JJ NN\_action TO\_to 11.2 VB\_take NP RB\_away IN\_from 5 10.5 VB\_take QP NNS\_years TO\_to 6 8.3 VB\_take DT NN\_time TO\_to 10

3 words (VB\_take L L)

| PMI  | Freq. | Signature Pattern               |
|------|-------|---------------------------------|
| 15.3 | 13    | VB_take IN_into NN_account      |
| 9.8  | 5     | VB_take NN_responsibility IN_fo |
| 9.7  | 8     | VB_take NN_credit IN_for        |
| 9.3  | 12    | VB_take DT_a NN_look            |
| 8.4  | 88    | VB_take NN_advantage IN_of      |
| 8.4  | 7     | VB_take NN_place IN_on          |
| 8.3  | 6     | VB_take NN_effect IN_in         |
| 8.1  | 14    | VB_take NNS_steps TO_to         |
| 0.8  | 6     | VB_take DT_a NN_chance          |
| 7.9  | 16    | VB_take NN_place IN_in          |

Freq. = 6

### References

Spence Green, Marie-Catherine de Marneffe, and Christopher D. Manning. 2013. Parsing models for identifying multiword expressions. *Computational Linguistics*, 39(1):195–227.

Carlos Ramisch, Aline Villavicencio, and Christian Boitet. 2010. mwetoolkit: a framework for multiword expression identification. In *Proc. of LREC'10*.

Federico Sangati, Willem Zuidema, and Rens Bod. 2010. Efficiently Extract Recurring Tree Fragments from Large Treebanks. In *Proc. of LREC'10*.

Andreas van Cranenburgh. 2014. Linear average time extraction of phrase-structure fragments. Presented at CLIN 2014, Leiden, The Netherlands.